Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,2,2-Trifluoro-1-[3-(2,2,2-trifluoro-acetyl)azulen-1-yl]ethanone

Sebastian Förster, Frank Eissmann, Wilhelm Seichter and Edwin Weber*

Institut für Organische Chemie, TU Bergakademie Freiberg, Leipziger Strasse 29, D-09596 Freiberg/Sachsen, Germany

Correspondence e-mail: edwin.weber@chemie.tu-freiberg.de

Received 18 April 2011; accepted 10 May 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.038; wR factor = 0.106; data-to-parameter ratio = 13.4.

There are two molecules in the asymmetric unit of the title compound, $C_{14}H_6F_6O_2$, in which the azulene systems possess an almost planar geometry with maximum deviations of 0.0438 (15) and 0.0396 (14) Å. Besides intra- and intermolecular C-H···O and C-H···F interactions, the structure displays three F···F contacts [2.793 (2), 2.8820 (17) and 2.9181 (16) Å]. Furthermore, a characteristic azulene π -stacking is observed with an alternating sequence of electron-rich five-membered rings and electron-deficient seven-membered rings [centroid-centroid distances = 3.5413 (12), 3.6847 (12), 3.5790 (12) and 3.7718 (12) Å].

Related literature

For the synthesis, see: Mathias & Overberger (1980); Zielinski *et al.* (2008). For the crystal structure of the parent azulene, see: Robertson *et al.* (1962). For halogen interactions in molecular crystal structures, see: Brammer *et al.* (2001); Metrangolo *et al.* (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{6}F_{6}O_{2} \\ M_{r} = 320.19 \\ \text{Triclinic, } P\overline{1} \\ a = 7.1634 \ (2) \ \text{\AA} \\ b = 10.8681 \ (4) \ \text{\AA} \\ c = 16.3286 \ (5) \ \text{\AA} \end{array}$

 $\alpha = 81.544 (2)^{\circ}$ $\beta = 83.310 (2)^{\circ}$ $\gamma = 80.009 (2)^{\circ}$ $V = 1232.92 (7) \text{ Å}^{3}$ Z = 4Mo K α radiation $\mu = 0.18 \text{ mm}^{-1}$ T = 100 K

Data collection

Bruker APEXII CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\rm min} = 0.933, T_{\rm max} = 0.988$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.106$ S = 1.025321 reflections $0.40 \times 0.14 \times 0.07 \text{ mm}$

20089 measured reflections 5321 independent reflections 3680 reflections with $I > 2\sigma(I)$ $R_{int} = 0.031$

397 parameters H-atom parameters constrained $\Delta \rho_{max} = 0.25$ e Å⁻³ $\Delta \rho_{min} = -0.31$ e Å⁻³

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C2-H2···F3	0.95	2.40	2.916 (2)	114
$C2A - H2A \cdot \cdot \cdot F3A$	0.95	2.45	2.972 (2)	115
$C2A - H2A \cdots F5A$	0.95	2.50	2.968 (2)	111
$C5-H5\cdots O2$	0.95	2.31	2.988 (2)	127
$C5A - H5A \cdots O2A$	0.95	2.33	3.001 (2)	127
$C6-H6\cdots O2A^{i}$	0.95	2.52	3.236 (2)	133
$C6A - H6A \cdots O2^{i}$	0.95	2.47	3.160 (2)	130
$C8-H8\cdots F2A^{ii}$	0.95	2.45	3.358 (2)	160
C9−H9···O1	0.95	2.31	2.983 (2)	127
$C9-H9\cdots O1A^{ii}$	0.95	2.58	3.454 (2)	153
$C9A - H9A \cdots O1^{ii}$	0.95	2.50	3.352 (2)	149
$C9A - H9A \cdots O1A$	0.95	2.31	2.993 (2)	128

Symmetry codes: (i) -x + 1, -y + 2, -z; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

This work was performed within the Cluster of Excellence 'Structure Design of Novel High-Performance Materials *via* Atomic Design and Defect Engineering (ADDE)', which is supported financially by the European Union (European Regional Development Fund) and by the Ministry of Science and Art of Saxony (SMWK).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2284).

References

- Brammer, L., Bruton, E. A. & Sherwood, P. (2001). Cryst. Growth Des. 1, 277–290.
- Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Mathias, L. J. & Overberger, C. G. (1980). J. Org. Chem. 45, 1701-1703.
- Metrangolo, P., Resnati, G., Pilati, T. & Biella, S. (2008). *Halogen Bonding*, *Structure and Bonding*, Vol. 126, edited by P. Metrangolo & G. Resnati, pp. 105–136. Berlin, Heidelberg: Springer.
- Robertson, J. M., Shearer, H. M. M., Sim, G. A. & Watson, D. G. (1962). Acta Cryst. 15, 1–5.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Zielinski, T., Kedziorek, M. & Jurczak, J. (2008). Chem. Eur. J. 14, 838-846.

Acta Cryst. (2011). E67, o1419 [doi:10.1107/S1600536811017569]

2,2,2-Trifluoro-1-[3-(2,2,2-trifluoroacetyl)azulen-1-yl]ethanone

S. Förster, F. Eissmann, W. Seichter and E. Weber

Comment

The asymmetric unit of the crystal structure contains two molecules featuring planar azulene ring systems (Fig 1). In the crystallographic *b* and *c* directions the structure is stabilized by hydrogen bonding both between the carbonyl oxygen or fluorine atoms and hydrogen atoms of the electronic deficient seven-membered ring (Fig 2). The crystal structure is characterized by formation of molecular stacks along the crystallographic *a*-axis (Fig 3). Due to the inherent dipole character of the azulene ring system, the molecules are arranged in a head-to-tail fashion within the stacks. Each molecule in the asymmetric unit shows two different interactions to its stack neighbors, which leads to four different distances between the centroids $Cg1\cdots Cg2^{i}$, d = 3.5413 (12), $Cg1\cdots Cg2^{ii}$, d = 3.6847 (12), $Cg1A\cdots Cg2A^{iii}$, d = 3.5790 (12), $Cg1A\cdots Cg2A^{iv}$, d = 3.7718 (12). Furthermore, three halogen—halogen contacts were observed: F5—F5 [d = 2.7931 (23) Å, $\theta_1 = \theta_2 = 145.79$ (14)°], F3—F6A [d = 2.8820 (17), $\theta_1 = 124.02$ (11), $\theta_2 = 113.52$ (12)] and F6A—F6 [d = 2.9181 (16), $\theta_1 = 161.89$ (11), $\theta_2 = 156.90$ (12)]. Symmetry codes: (i) = -x, 2 - y, -z; (ii) = 1 - x, 2 - y, -z; (iii) 1 - x, 2 - y, 1 - z; (iv) 2 - x, 2 - y, 1 - z.

Experimental

The title compound was prepared according to the literature procedure of Mathias *et al.* (1980). Crystallization by slow evaporation from acetone yielded suitable crystals after 3 days.

Refinement

Aromatic H atoms were positioned geometrically and allowed to ride on their respective parent atoms, with C—H = 0.95 Å and $U_{iso} = 1.2 U_{eq}(C)$.

Figures

Fig. 1. Asymmetric unit of the title compound, showing the atom numbering schemes. Displacement ellipsoids are drawn at the 50% probability level.

Fig. 2. Molecular sheets within the packing of the title compound. Intermolecular interactions are represented as dashed lines.

Fig. 3. Packing diagram viewed down the *a* axis, showing the stacking interactions of the azulene systems.

2,2,2-Trifluoro-1-[3-(2,2,2-trifluoroacetyl) azulen-1-yl]e than one

Crystal data	
$C_{14}H_6F_6O_2$	Z = 4
$M_r = 320.19$	F(000) = 640
Triclinic, <i>P</i> T	$D_{\rm x} = 1.725 \ {\rm Mg \ m^{-3}}$
Hall symbol: -P 1	Mo K α radiation, $\lambda = 0.71073$ Å
a = 7.1634 (2) Å	Cell parameters from 6112 reflections
b = 10.8681 (4) Å	$\theta = 2.9 - 28.9^{\circ}$
c = 16.3286 (5) Å	$\mu = 0.18 \text{ mm}^{-1}$
$\alpha = 81.544 \ (2)^{\circ}$	T = 100 K
$\beta = 83.310 \ (2)^{\circ}$	Rod, red
$\gamma = 80.009 \ (2)^{\circ}$	$0.40 \times 0.14 \times 0.07 \text{ mm}$
$V = 1232.92 (7) \text{ Å}^3$	

Data collection

Bruker APEXII CCD area-detector diffractometer	5321 independent reflections
Radiation source: fine-focus sealed tube	3680 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.031$
ϕ and ω scans	$\theta_{\text{max}} = 27.1^{\circ}, \ \theta_{\text{min}} = 1.3^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2007)	$h = -9 \rightarrow 9$
$T_{\min} = 0.933, T_{\max} = 0.988$	$k = -13 \rightarrow 13$
20089 measured reflections	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.038$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.106$	H-atom parameters constrained
<i>S</i> = 1.02	$w = 1/[\sigma^2(F_o^2) + (0.0465P)^2 + 0.5715P]$ where $P = (F_o^2 + 2F_c^2)/3$
5321 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
397 parameters	$\Delta \rho_{\rm max} = 0.25 \ {\rm e} \ {\rm \AA}^{-3}$

0 restraints

 $\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
F1	0.39463 (18)	0.60356 (13)	0.19502 (8)	0.0398 (3)
F2	0.2168 (2)	0.64770 (12)	0.30613 (7)	0.0412 (3)
F3	0.09017 (18)	0.61716 (11)	0.19949 (7)	0.0321 (3)
F4	0.36566 (18)	0.57475 (11)	-0.07337 (8)	0.0346 (3)
F5	0.05955 (18)	0.59590 (11)	-0.05863 (7)	0.0344 (3)
F6	0.2086 (2)	0.60122 (12)	-0.18071 (7)	0.0370 (3)
01	0.2103 (2)	0.88041 (15)	0.24264 (9)	0.0379 (4)
O2	0.1713 (2)	0.84185 (14)	-0.17976 (8)	0.0319 (4)
C1	0.2215 (3)	0.84447 (19)	0.10164 (11)	0.0204 (4)
C2	0.2071 (3)	0.76448 (18)	0.04375 (11)	0.0195 (4)
H2	0.1961	0.6778	0.0568	0.023*
C3	0.2114 (3)	0.83168 (18)	-0.03648 (11)	0.0192 (4)
C4	0.2344 (2)	0.95792 (18)	-0.03047 (11)	0.0188 (4)
C5	0.2515 (3)	1.05229 (18)	-0.09710 (12)	0.0213 (4)
Н5	0.2413	1.0298	-0.1503	0.026*
C6	0.2813 (3)	1.17487 (19)	-0.09636 (12)	0.0237 (4)
H6	0.2861	1.2254	-0.1490	0.028*
C7	0.3050 (3)	1.23385 (19)	-0.02918 (13)	0.0246 (4)
H7	0.3251	1.3189	-0.0424	0.030*
C8	0.3033 (3)	1.18607 (19)	0.05439 (13)	0.0240 (4)
H8	0.3249	1.2427	0.0901	0.029*
C9	0.2749 (3)	1.06782 (19)	0.09354 (12)	0.0223 (4)
Н9	0.2777	1.0549	0.1522	0.027*
C10	0.2428 (3)	0.96584 (18)	0.05790 (11)	0.0194 (4)
C11	0.2178 (3)	0.8089 (2)	0.19135 (12)	0.0243 (4)
C12	0.2291 (3)	0.6679 (2)	0.22329 (12)	0.0280 (5)
C13	0.1949 (3)	0.78107 (19)	-0.11202 (12)	0.0223 (4)
C14	0.2074 (3)	0.6369 (2)	-0.10652 (12)	0.0257 (5)
F1A	0.82283 (17)	0.62221 (12)	0.68301 (8)	0.0367 (3)
F2A	0.6196 (2)	0.67680 (12)	0.78398 (7)	0.0382 (3)
F3A	0.52235 (17)	0.63290 (11)	0.67388 (7)	0.0307 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

F4A	0.86640 (18)	0.55033 (11)	0.42077 (8)	0.0373 (3)
F5A	0.56351 (17)	0.59936 (12)	0.41519 (8)	0.0346 (3)
F6A	0.7480 (2)	0.57401 (12)	0.30349 (8)	0.0413 (3)
O1A	0.6058 (2)	0.90591 (14)	0.71153 (8)	0.0314 (4)
O2A	0.7788 (2)	0.80970 (14)	0.29118 (8)	0.0320 (4)
C1A	0.6844 (3)	0.85148 (18)	0.57393 (11)	0.0185 (4)
C2A	0.6948 (3)	0.76475 (18)	0.51849 (11)	0.0193 (4)
H2A	0.6756	0.6797	0.5335	0.023*
C3A	0.7379 (3)	0.82104 (18)	0.43672 (11)	0.0187 (4)
C4A	0.7618 (2)	0.94807 (18)	0.44046 (11)	0.0175 (4)
C5A	0.8140 (3)	1.03354 (18)	0.37289 (12)	0.0203 (4)
H5A	0.8301	1.0040	0.3202	0.024*
C6A	0.8452 (3)	1.15565 (18)	0.37253 (12)	0.0217 (4)
H6A	0.8807	1.1984	0.3194	0.026*
C7A	0.8324 (3)	1.22506 (18)	0.43871 (12)	0.0218 (4)
H7A	0.8577	1.3089	0.4243	0.026*
C8A	0.7876 (3)	1.18895 (18)	0.52299 (12)	0.0212 (4)
H8A	0.7898	1.2507	0.5583	0.025*
C9A	0.7401 (3)	1.07489 (18)	0.56275 (12)	0.0203 (4)
H9A	0.7133	1.0694	0.6214	0.024*
C10A	0.7267 (2)	0.96792 (17)	0.52800 (11)	0.0174 (4)
C11A	0.6426 (3)	0.82740 (19)	0.66380 (12)	0.0220 (4)
C12A	0.6515 (3)	0.6882 (2)	0.70151 (12)	0.0254 (4)
C13A	0.7520 (3)	0.76079 (19)	0.36250 (12)	0.0223 (4)
C14A	0.7319 (3)	0.6197 (2)	0.37514 (13)	0.0271 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
F1	0.0358 (7)	0.0393 (8)	0.0377 (7)	0.0061 (6)	-0.0025 (6)	0.0019 (6)
F2	0.0649 (9)	0.0404 (8)	0.0172 (6)	-0.0087 (7)	-0.0069 (6)	0.0030 (5)
F3	0.0401 (7)	0.0298 (7)	0.0280 (7)	-0.0146 (6)	-0.0019 (5)	0.0006 (5)
F4	0.0390 (7)	0.0265 (7)	0.0354 (7)	0.0019 (6)	-0.0017 (6)	-0.0048 (5)
F5	0.0405 (8)	0.0299 (7)	0.0340 (7)	-0.0169 (6)	0.0104 (6)	-0.0059 (5)
F6	0.0578 (9)	0.0325 (7)	0.0242 (7)	-0.0138 (6)	0.0020 (6)	-0.0121 (5)
01	0.0591 (11)	0.0384 (9)	0.0216 (8)	-0.0204 (8)	-0.0042 (7)	-0.0064 (7)
O2	0.0502 (10)	0.0284 (8)	0.0186 (8)	-0.0108 (7)	-0.0062 (7)	-0.0003 (6)
C1	0.0179 (9)	0.0263 (11)	0.0178 (10)	-0.0050 (8)	-0.0018 (7)	-0.0034 (8)
C2	0.0168 (9)	0.0215 (10)	0.0199 (10)	-0.0039 (8)	-0.0011 (7)	-0.0015 (8)
C3	0.0172 (9)	0.0225 (10)	0.0182 (9)	-0.0039 (8)	-0.0009 (7)	-0.0033 (7)
C4	0.0131 (9)	0.0228 (10)	0.0205 (10)	-0.0030(7)	-0.0013 (7)	-0.0031 (8)
C5	0.0174 (10)	0.0264 (11)	0.0206 (10)	-0.0036 (8)	-0.0029 (7)	-0.0044 (8)
C6	0.0213 (10)	0.0245 (11)	0.0248 (11)	-0.0054 (8)	-0.0031 (8)	0.0011 (8)
C7	0.0198 (10)	0.0203 (11)	0.0342 (12)	-0.0040 (8)	-0.0026 (8)	-0.0038 (8)
C8	0.0199 (10)	0.0235 (11)	0.0310 (11)	-0.0040 (8)	-0.0048 (8)	-0.0086 (8)
C9	0.0168 (9)	0.0285 (11)	0.0228 (10)	-0.0029 (8)	-0.0052 (8)	-0.0055 (8)
C10	0.0130 (9)	0.0250 (11)	0.0206 (10)	-0.0035 (8)	-0.0015 (7)	-0.0032 (8)
C11	0.0239 (10)	0.0310 (12)	0.0196 (10)	-0.0082 (9)	-0.0030 (8)	-0.0033 (8)

C12	0.0336 (12)	0.0314 (12)	0.0179 (10)	-0.0046 (9)	-0.0029 (8)	0.0000 (8)
C13	0.0216 (10)	0.0261 (11)	0.0195 (10)	-0.0061 (8)	0.0017 (8)	-0.0044 (8)
C14	0.0318 (11)	0.0277 (11)	0.0182 (10)	-0.0078 (9)	0.0034 (8)	-0.0055 (8)
F1A	0.0294 (7)	0.0335 (7)	0.0415 (8)	-0.0003 (6)	-0.0045 (6)	0.0092 (6)
F2A	0.0566 (9)	0.0413 (8)	0.0189 (6)	-0.0200 (7)	-0.0048 (6)	0.0043 (5)
F3A	0.0363 (7)	0.0295 (7)	0.0293 (7)	-0.0159 (5)	-0.0057 (5)	0.0010 (5)
F4A	0.0389 (7)	0.0231 (7)	0.0484 (8)	-0.0008 (6)	-0.0043 (6)	-0.0048 (6)
F5A	0.0330 (7)	0.0371 (8)	0.0383 (7)	-0.0175 (6)	0.0070 (5)	-0.0142 (6)
F6A	0.0581 (9)	0.0388 (8)	0.0341 (7)	-0.0221 (7)	0.0097 (6)	-0.0217 (6)
O1A	0.0429 (9)	0.0332 (9)	0.0212 (7)	-0.0150 (7)	0.0010 (6)	-0.0065 (6)
O2A	0.0481 (10)	0.0293 (8)	0.0194 (8)	-0.0081 (7)	-0.0021 (7)	-0.0043 (6)
C1A	0.0158 (9)	0.0224 (10)	0.0180 (9)	-0.0038 (8)	-0.0034 (7)	-0.0027 (7)
C2A	0.0156 (9)	0.0191 (10)	0.0229 (10)	-0.0030 (7)	-0.0038 (7)	-0.0001 (8)
C3A	0.0167 (9)	0.0219 (10)	0.0184 (9)	-0.0039 (8)	-0.0022 (7)	-0.0043 (8)
C4A	0.0130 (9)	0.0209 (10)	0.0181 (9)	-0.0014 (7)	-0.0034 (7)	-0.0011 (7)
C5A	0.0177 (9)	0.0245 (11)	0.0185 (9)	-0.0017 (8)	-0.0023 (7)	-0.0042 (8)
C6A	0.0190 (10)	0.0247 (11)	0.0204 (10)	-0.0042 (8)	-0.0016 (8)	0.0012 (8)
C7A	0.0176 (10)	0.0207 (10)	0.0270 (11)	-0.0034 (8)	-0.0047 (8)	-0.0009 (8)
C8A	0.0179 (10)	0.0201 (10)	0.0267 (11)	-0.0024 (8)	-0.0043 (8)	-0.0060 (8)
C9A	0.0150 (9)	0.0266 (11)	0.0195 (10)	-0.0018 (8)	-0.0036 (7)	-0.0043 (8)
C10A	0.0118 (9)	0.0220 (10)	0.0186 (9)	-0.0025 (7)	-0.0021 (7)	-0.0026 (7)
C11A	0.0186 (10)	0.0297 (11)	0.0193 (10)	-0.0082 (8)	-0.0026 (7)	-0.0024 (8)
C12A	0.0286 (11)	0.0308 (12)	0.0179 (10)	-0.0098 (9)	-0.0031 (8)	0.0004 (8)
C13A	0.0203 (10)	0.0262 (11)	0.0217 (10)	-0.0051 (8)	-0.0022 (8)	-0.0054 (8)
C14A	0.0298 (11)	0.0284 (12)	0.0256 (11)	-0.0079 (9)	0.0021 (9)	-0.0119 (9)

Geometric parameters (Å, °)

F1—C12	1.337 (2)	F1A—C12A	1.336 (2)
F2—C12	1.333 (2)	F2A—C12A	1.330 (2)
F3—C12	1.337 (2)	F3A—C12A	1.338 (2)
F4—C14	1.343 (2)	F4A—C14A	1.342 (3)
F5—C14	1.341 (2)	F5A—C14A	1.341 (2)
F6—C14	1.324 (2)	F6A—C14A	1.322 (2)
O1—C11	1.214 (2)	O1A—C11A	1.214 (2)
O2—C13	1.216 (2)	O2A—C13A	1.215 (2)
C1—C2	1.398 (3)	C1A—C2A	1.387 (3)
C1—C10	1.428 (3)	C1A—C10A	1.434 (3)
C1—C11	1.457 (3)	C1A—C11A	1.457 (3)
C2—C3	1.403 (3)	C2A—C3A	1.408 (3)
С2—Н2	0.9500	C2A—H2A	0.9500
C3—C4	1.429 (3)	C3A—C4A	1.431 (3)
C3—C13	1.447 (3)	C3A—C13A	1.446 (3)
C4—C5	1.391 (3)	C4A—C5A	1.394 (3)
C4—C10	1.467 (3)	C4A—C10A	1.463 (2)
C5—C6	1.387 (3)	C5A—C6A	1.383 (3)
С5—Н5	0.9500	C5A—H5A	0.9500
C6—C7	1.390 (3)	C6A—C7A	1.392 (3)
С6—Н6	0.9500	С6А—Н6А	0.9500

С7—С8	1.386 (3)	C7A—C8A	1.390 (3)
С7—Н7	0.9500	С7А—Н7А	0.9500
C8—C9	1.386 (3)	C8A—C9A	1.390 (3)
С8—Н8	0.9500	С8А—Н8А	0.9500
C9—C10	1.389 (3)	C9A—C10A	1.389 (3)
С9—Н9	0.9500	С9А—Н9А	0.9500
C11—C12	1.536 (3)	C11A—C12A	1.541 (3)
C13—C14	1.544 (3)	C13A—C14A	1.546 (3)
C2—C1—C10	108.52 (16)	C2A—C1A—C10A	108.39 (16)
C2—C1—C11	125.49 (18)	C2A—C1A—C11A	125.81 (17)
C10-C1-C11	125.99 (17)	C10A—C1A—C11A	125.78 (17)
C1—C2—C3	109.69 (17)	C1A—C2A—C3A	110.12 (17)
C1—C2—H2	125.2	C1A—C2A—H2A	124.9
С3—С2—Н2	125.2	СЗА—С2А—Н2А	124.9
C2—C3—C4	108.25 (16)	C2A—C3A—C4A	107.87 (16)
C2—C3—C13	125.54 (18)	C2A—C3A—C13A	125.59 (18)
C4—C3—C13	126.20 (17)	C4A—C3A—C13A	126.53 (17)
C5—C4—C3	125.52 (17)	C5A—C4A—C3A	125.60 (17)
C5—C4—C10	127.61 (17)	C5A—C4A—C10A	127.54 (17)
C3—C4—C10	106.84 (16)	C3A—C4A—C10A	106.85 (15)
C6—C5—C4	128.73 (18)	C6A—C5A—C4A	128.50 (18)
С6—С5—Н5	115.6	С6А—С5А—Н5А	115.7
С4—С5—Н5	115.6	С4А—С5А—Н5А	115.7
C5—C6—C7	128.88 (19)	C5A—C6A—C7A	129.35 (18)
С5—С6—Н6	115.6	C5A—C6A—H6A	115.3
С7—С6—Н6	115.6	С7А—С6А—Н6А	115.3
C8—C7—C6	129 13 (19)	C8A - C7A - C6A	129 10 (19)
С8—С7—Н7	115.4	C8A—C7A—H7A	115.5
С6—С7—Н7	115.4	C6A—C7A—H7A	115 5
C7 - C8 - C9	129 54 (19)	C7A - C8A - C9A	128 92 (18)
C7—C8—H8	115.2	C7A—C8A—H8A	115.5
C9—C8—H8	115.2	C9A - C8A - H8A	115.5
C10-C9-C8	128 27 (18)	C10A - C9A - C8A	128 53 (18)
C10-C9-H9	115.9	C10A - C9A - H9A	115.7
С8—С9—Н9	115.9		115.7
C9-C10-C1	125 46 (17)	C9A - C10A - C1A	125 14 (17)
C9 - C10 - C4	127.81 (18)	C9A - C10A - C4A	123.11(17) 128.04(17)
C1 - C10 - C4	106.65 (16)	C1A - C10A - C4A	126.04(17) 106 74 (15)
01 - 01 - 01	125.8 (2)	01A - C11A - C1A	126 36 (19)
01 - C11 - C12	117 38 (18)	01A $-C11A$ $-C12A$	120.30(17) 117.31(17)
C1 - C11 - C12	116 78 (17)	C1A - C11A - C12A	116 31 (17)
F_{2}^{-} C_{12}^{-} F_{1}^{-}	107.72(17)	$F_{2} = C_{12} = F_{14}$	107.42(16)
F_{2} C_{12} F_{3}	107.72(17) 107.00(17)	$F_2A = C_{12}A = F_{3}A$	107.42(10) 107.06(16)
F1 - C12 - F3	107.28 (17)	$F_{1} = C_{12} = F_{3}$	107.55 (16)
F_{2} C_{12} C_{11}	111 20 (17)	$F^2A - C^{12}A - C^{11}A$	111 26 (16)
F1-C12-C11	110 51 (17)	F1A - C12A - C11A	110.94 (16)
F3-C12-C11	112.90 (17)	F_{3A} C_{12A} C_{11A}	112 37 (16)
02-C13-C3	125.94 (19)	O2A - C13A - C3A	126 57 (10)
02 - C13 - C14	116 69 (17)	O2A - C13A - C14A	116 71 (17)
02 010 011			

C3—C13—C14	117.37 (17)	C3A—C13A—C14A	116.72 (17)
F6—C14—F5	107.30 (16)	F6A—C14A—F4A	107.38 (17)
F6—C14—F4	107.41 (16)	F6A—C14A—F5A	107.43 (16)
F5	106.68 (16)	F4A—C14A—F5A	106.64 (17)
F6-C14-C13	111.59 (16)	F6A—C14A—C13A	111.71 (17)
F5-C14-C13	111.68 (16)	F4A—C14A—C13A	111.30 (16)
F4—C14—C13	111.89 (16)	F5A—C14A—C13A	112.10 (16)
C10—C1—C2—C3	-2.2 (2)	C10A—C1A—C2A—C3A	-1.5 (2)
C11—C1—C2—C3	178.56 (18)	C11A—C1A—C2A—C3A	179.96 (17)
C1—C2—C3—C4	1.6 (2)	C1A—C2A—C3A—C4A	1.8 (2)
C1—C2—C3—C13	-178.33 (18)	C1A—C2A—C3A—C13A	-177.22 (17)
C2—C3—C4—C5	177.72 (17)	C2A—C3A—C4A—C5A	177.00 (18)
C13—C3—C4—C5	-2.3 (3)	C13A—C3A—C4A—C5A	-4.0 (3)
C2—C3—C4—C10	-0.4 (2)	C2A—C3A—C4A—C10A	-1.4 (2)
C13—C3—C4—C10	179.51 (18)	C13A—C3A—C4A—C10A	177.65 (18)
C3—C4—C5—C6	-177.32 (19)	C3A—C4A—C5A—C6A	-177.74 (18)
C10-C4-C5-C6	0.4 (3)	C10A—C4A—C5A—C6A	0.3 (3)
C4—C5—C6—C7	1.3 (3)	C4A—C5A—C6A—C7A	-0.3 (3)
C5—C6—C7—C8	-0.6 (4)	C5A—C6A—C7A—C8A	1.2 (3)
C6—C7—C8—C9	-1.1 (4)	C6A—C7A—C8A—C9A	-1.5 (3)
C7—C8—C9—C10	0.9 (4)	C7A—C8A—C9A—C10A	0.4 (3)
C8—C9—C10—C1	177.52 (19)	C8A—C9A—C10A—C1A	177.21 (18)
C8—C9—C10—C4	1.1 (3)	C8A—C9A—C10A—C4A	0.9 (3)
C2-C1-C10-C9	-175.17 (18)	C2A—C1A—C10A—C9A	-176.37 (17)
C11—C1—C10—C9	4.1 (3)	C11A—C1A—C10A—C9A	2.2 (3)
C2-C1-C10-C4	1.8 (2)	C2A—C1A—C10A—C4A	0.6 (2)
C11—C1—C10—C4	-178.89 (18)	C11A—C1A—C10A—C4A	179.14 (17)
C5-C4-C10-C9	-2.0 (3)	C5A—C4A—C10A—C9A	-1.0 (3)
C3—C4—C10—C9	176.06 (18)	C3A—C4A—C10A—C9A	177.34 (18)
C5-C4-C10-C1	-178.95 (18)	C5A—C4A—C10A—C1A	-177.85 (18)
C3—C4—C10—C1	-0.9 (2)	C3A—C4A—C10A—C1A	0.47 (19)
C2-C1-C11-O1	-171.8 (2)	C2A—C1A—C11A—O1A	-168.50 (19)
C10-C1-C11-O1	9.0 (3)	C10A—C1A—C11A—O1A	13.2 (3)
C2-C1-C11-C12	9.7 (3)	C2A—C1A—C11A—C12A	13.2 (3)
C10-C1-C11-C12	-169.47 (18)	C10A—C1A—C11A—C12A	-165.03 (17)
O1—C11—C12—F2	3.9 (3)	O1A—C11A—C12A—F2A	-1.3 (3)
C1—C11—C12—F2	-177.52 (17)	C1A—C11A—C12A—F2A	177.14 (16)
O1-C11-C12-F1	-115.7 (2)	O1A—C11A—C12A—F1A	-120.81 (19)
C1-C11-C12-F1	62.9 (2)	C1A—C11A—C12A—F1A	57.6 (2)
O1—C11—C12—F3	124.1 (2)	O1A—C11A—C12A—F3A	118.75 (19)
C1—C11—C12—F3	-57.2 (2)	C1A—C11A—C12A—F3A	-62.8 (2)
C2—C3—C13—O2	168.8 (2)	C2A—C3A—C13A—O2A	175.72 (19)
C4—C3—C13—O2	-11.1 (3)	C4A—C3A—C13A—O2A	-3.1 (3)
C2—C3—C13—C14	-10.9 (3)	C2A—C3A—C13A—C14A	-4.6 (3)
C4—C3—C13—C14	169.21 (17)	C4A—C3A—C13A—C14A	176.51 (17)
O2—C13—C14—F6	6.2 (3)	O2A—C13A—C14A—F6A	0.0 (3)
C3—C13—C14—F6	-174.04 (16)	C3A—C13A—C14A—F6A	-179.65 (17)
O2—C13—C14—F5	-113.9 (2)	O2A—C13A—C14A—F4A	120.0 (2)
C3—C13—C14—F5	65.9 (2)	C3A—C13A—C14A—F4A	-59.6 (2)
	× /		

O2—C13—C14—F4 C3—C13—C14—F4	126.63 (19) -53.7 (2)	O2A—C13A—C14A—F5A C3A—C13A—C14A—F5A		-120.6 (2) 59.7 (2)
Hydrogen-bond geometry (Å, °)				
D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C2—H2…F3	0.95	2.40	2.916 (2)	114
C2A—H2A···F3A	0.95	2.45	2.972 (2)	115
C2A—H2A···F5A	0.95	2.50	2.968 (2)	111
С5—Н5…О2	0.95	2.31	2.988 (2)	127
С5А—Н5А…О2А	0.95	2.33	3.001 (2)	127
C6—H6···O2A ⁱ	0.95	2.52	3.236 (2)	133
C6A—H6A····O2 ⁱ	0.95	2.47	3.160 (2)	130
C8—H8···F2A ⁱⁱ	0.95	2.45	3.358 (2)	160
С9—Н9…О1	0.95	2.31	2.983 (2)	127
C9—H9····O1A ⁱⁱ	0.95	2.58	3.454 (2)	153
C9A—H9A…O1 ⁱⁱ	0.95	2.50	3.352 (2)	149
С9А—Н9А…О1А	0.95	2.31	2.993 (2)	128
Symmetry codes: (i) $-x+1$, $-y+2$, $-z$; (ii) -x+1, -y+2, -z+1.			

Fig. 1

Fig. 2

Fig. 3